- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0001000001000000
- More
- Availability
-
20
- Author / Contributor
- Filter by Author / Creator
-
-
Li, Guifang (2)
-
Sarma, Raktim (2)
-
Smith-Dryden, Seth (2)
-
Zhu, Zheyuan (2)
-
Pang, Shuo S (1)
-
Pang, Shuo_S (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Photonic computing has the potential to harness the full degrees of freedom (DOFs) of the light field, including the wavelength, spatial mode, spatial location, phase quadrature, and polarization, to achieve a higher level of computing parallelism and scalability than digital electronic processors. While multiplexing using the wavelength and other DOFs can be readily integrated on silicon photonics platforms with compact footprints, conventional mode-division multiplexed (MDM) photonic designs occupy areas exceeding tens to hundreds of microns for a few spatial modes, significantly limiting their scalability. Here, we utilize inverse design to demonstrate an ultracompact photonic computing core that calculates vector dot products based on MDM coherent mixing. Our dot-product core integrates the functionalities of two-mode multiplexers and one multimode coherent mixer within a nominal footprint of 5 μm×3 μm. We have experimentally demonstrated computing examples on the fabricated dot-product core, including complex number multiplication and motion estimation using optical flow. The compact dot-product core design enables large-scale on-chip integration in a parallel photonic computing primitive cluster for high-throughput scientific computing and computer vision tasks.more » « less
-
Zhu, Zheyuan; Sarma, Raktim; Smith-Dryden, Seth; Li, Guifang; Pang, Shuo S (, Optica Publishing Group)We present an inversely designed integrated photonic dot-product core based on mode-division multiplexing. The core features a 5µm×3µm footprint for scalability and can perform general-purpose vector dot-products with easily reconfigurable inputs for various computing applications.more » « less
An official website of the United States government
